3.1.5 \(\int \frac {\text {arctanh}(a+b x)^2}{x} \, dx\) [5]

3.1.5.1 Optimal result
3.1.5.2 Mathematica [C] (verified)
3.1.5.3 Rubi [A] (verified)
3.1.5.4 Maple [C] (warning: unable to verify)
3.1.5.5 Fricas [F]
3.1.5.6 Sympy [F]
3.1.5.7 Maxima [F]
3.1.5.8 Giac [F]
3.1.5.9 Mupad [F(-1)]

3.1.5.1 Optimal result

Integrand size = 12, antiderivative size = 148 \[ \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx=-\text {arctanh}(a+b x)^2 \log \left (\frac {2}{1+a+b x}\right )+\text {arctanh}(a+b x)^2 \log \left (\frac {2 b x}{(1-a) (1+a+b x)}\right )+\text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,1-\frac {2}{1+a+b x}\right )-\text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,1-\frac {2 b x}{(1-a) (1+a+b x)}\right )+\frac {1}{2} \operatorname {PolyLog}\left (3,1-\frac {2}{1+a+b x}\right )-\frac {1}{2} \operatorname {PolyLog}\left (3,1-\frac {2 b x}{(1-a) (1+a+b x)}\right ) \]

output
-arctanh(b*x+a)^2*ln(2/(b*x+a+1))+arctanh(b*x+a)^2*ln(2*b*x/(1-a)/(b*x+a+1 
))+arctanh(b*x+a)*polylog(2,1-2/(b*x+a+1))-arctanh(b*x+a)*polylog(2,1-2*b* 
x/(1-a)/(b*x+a+1))+1/2*polylog(3,1-2/(b*x+a+1))-1/2*polylog(3,1-2*b*x/(1-a 
)/(b*x+a+1))
 
3.1.5.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.53 (sec) , antiderivative size = 753, normalized size of antiderivative = 5.09 \[ \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx=-\frac {4}{3} \text {arctanh}(a+b x)^3-\frac {2 \text {arctanh}(a+b x)^3}{3 a}+\frac {2 \sqrt {1-a^2} e^{\text {arctanh}(a)} \text {arctanh}(a+b x)^3}{3 a}-\text {arctanh}(a+b x)^2 \log \left (1+e^{-2 \text {arctanh}(a+b x)}\right )-i \pi \text {arctanh}(a+b x) \log \left (\frac {1}{2} \left (e^{-\text {arctanh}(a+b x)}+e^{\text {arctanh}(a+b x)}\right )\right )-\text {arctanh}(a+b x)^2 \log \left (1-\frac {\sqrt {-1+a} e^{\text {arctanh}(a+b x)}}{\sqrt {-1-a}}\right )-\text {arctanh}(a+b x)^2 \log \left (1+\frac {\sqrt {-1+a} e^{\text {arctanh}(a+b x)}}{\sqrt {-1-a}}\right )+\text {arctanh}(a+b x)^2 \log \left (\frac {1}{2} e^{-\text {arctanh}(a+b x)} \left (1+a-e^{2 \text {arctanh}(a+b x)}+a e^{2 \text {arctanh}(a+b x)}\right )\right )+\text {arctanh}(a+b x)^2 \log \left (1-e^{-\text {arctanh}(a)+\text {arctanh}(a+b x)}\right )+\text {arctanh}(a+b x)^2 \log \left (1+e^{-\text {arctanh}(a)+\text {arctanh}(a+b x)}\right )-2 \text {arctanh}(a) \text {arctanh}(a+b x) \log \left (\frac {1}{2} i \left (-e^{\text {arctanh}(a)-\text {arctanh}(a+b x)}+e^{-\text {arctanh}(a)+\text {arctanh}(a+b x)}\right )\right )+\text {arctanh}(a+b x)^2 \log \left (1-e^{-2 \text {arctanh}(a)+2 \text {arctanh}(a+b x)}\right )+i \pi \text {arctanh}(a+b x) \log \left (\frac {1}{\sqrt {1-(a+b x)^2}}\right )-\text {arctanh}(a+b x)^2 \log \left (-\frac {b x}{\sqrt {1-(a+b x)^2}}\right )+2 \text {arctanh}(a) \text {arctanh}(a+b x) \log (-i \sinh (\text {arctanh}(a)-\text {arctanh}(a+b x)))+\text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,-e^{-2 \text {arctanh}(a+b x)}\right )-2 \text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,-\frac {\sqrt {-1+a} e^{\text {arctanh}(a+b x)}}{\sqrt {-1-a}}\right )-2 \text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,\frac {\sqrt {-1+a} e^{\text {arctanh}(a+b x)}}{\sqrt {-1-a}}\right )+2 \text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,-e^{-\text {arctanh}(a)+\text {arctanh}(a+b x)}\right )+2 \text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,e^{-\text {arctanh}(a)+\text {arctanh}(a+b x)}\right )+\text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,e^{-2 \text {arctanh}(a)+2 \text {arctanh}(a+b x)}\right )+\frac {1}{2} \operatorname {PolyLog}\left (3,-e^{-2 \text {arctanh}(a+b x)}\right )+2 \operatorname {PolyLog}\left (3,-\frac {\sqrt {-1+a} e^{\text {arctanh}(a+b x)}}{\sqrt {-1-a}}\right )+2 \operatorname {PolyLog}\left (3,\frac {\sqrt {-1+a} e^{\text {arctanh}(a+b x)}}{\sqrt {-1-a}}\right )-2 \operatorname {PolyLog}\left (3,-e^{-\text {arctanh}(a)+\text {arctanh}(a+b x)}\right )-2 \operatorname {PolyLog}\left (3,e^{-\text {arctanh}(a)+\text {arctanh}(a+b x)}\right )-\frac {1}{2} \operatorname {PolyLog}\left (3,e^{-2 \text {arctanh}(a)+2 \text {arctanh}(a+b x)}\right ) \]

input
Integrate[ArcTanh[a + b*x]^2/x,x]
 
output
(-4*ArcTanh[a + b*x]^3)/3 - (2*ArcTanh[a + b*x]^3)/(3*a) + (2*Sqrt[1 - a^2 
]*E^ArcTanh[a]*ArcTanh[a + b*x]^3)/(3*a) - ArcTanh[a + b*x]^2*Log[1 + E^(- 
2*ArcTanh[a + b*x])] - I*Pi*ArcTanh[a + b*x]*Log[(E^(-ArcTanh[a + b*x]) + 
E^ArcTanh[a + b*x])/2] - ArcTanh[a + b*x]^2*Log[1 - (Sqrt[-1 + a]*E^ArcTan 
h[a + b*x])/Sqrt[-1 - a]] - ArcTanh[a + b*x]^2*Log[1 + (Sqrt[-1 + a]*E^Arc 
Tanh[a + b*x])/Sqrt[-1 - a]] + ArcTanh[a + b*x]^2*Log[(1 + a - E^(2*ArcTan 
h[a + b*x]) + a*E^(2*ArcTanh[a + b*x]))/(2*E^ArcTanh[a + b*x])] + ArcTanh[ 
a + b*x]^2*Log[1 - E^(-ArcTanh[a] + ArcTanh[a + b*x])] + ArcTanh[a + b*x]^ 
2*Log[1 + E^(-ArcTanh[a] + ArcTanh[a + b*x])] - 2*ArcTanh[a]*ArcTanh[a + b 
*x]*Log[(I/2)*(-E^(ArcTanh[a] - ArcTanh[a + b*x]) + E^(-ArcTanh[a] + ArcTa 
nh[a + b*x]))] + ArcTanh[a + b*x]^2*Log[1 - E^(-2*ArcTanh[a] + 2*ArcTanh[a 
 + b*x])] + I*Pi*ArcTanh[a + b*x]*Log[1/Sqrt[1 - (a + b*x)^2]] - ArcTanh[a 
 + b*x]^2*Log[-((b*x)/Sqrt[1 - (a + b*x)^2])] + 2*ArcTanh[a]*ArcTanh[a + b 
*x]*Log[(-I)*Sinh[ArcTanh[a] - ArcTanh[a + b*x]]] + ArcTanh[a + b*x]*PolyL 
og[2, -E^(-2*ArcTanh[a + b*x])] - 2*ArcTanh[a + b*x]*PolyLog[2, -((Sqrt[-1 
 + a]*E^ArcTanh[a + b*x])/Sqrt[-1 - a])] - 2*ArcTanh[a + b*x]*PolyLog[2, ( 
Sqrt[-1 + a]*E^ArcTanh[a + b*x])/Sqrt[-1 - a]] + 2*ArcTanh[a + b*x]*PolyLo 
g[2, -E^(-ArcTanh[a] + ArcTanh[a + b*x])] + 2*ArcTanh[a + b*x]*PolyLog[2, 
E^(-ArcTanh[a] + ArcTanh[a + b*x])] + ArcTanh[a + b*x]*PolyLog[2, E^(-2*Ar 
cTanh[a] + 2*ArcTanh[a + b*x])] + PolyLog[3, -E^(-2*ArcTanh[a + b*x])]/...
 
3.1.5.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6661, 25, 27, 6474}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx\)

\(\Big \downarrow \) 6661

\(\displaystyle \frac {\int \frac {\text {arctanh}(a+b x)^2}{x}d(a+b x)}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int -\frac {\text {arctanh}(a+b x)^2}{x}d(a+b x)}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle -\int -\frac {\text {arctanh}(a+b x)^2}{b x}d(a+b x)\)

\(\Big \downarrow \) 6474

\(\displaystyle \text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,1-\frac {2}{a+b x+1}\right )-\text {arctanh}(a+b x) \operatorname {PolyLog}\left (2,1-\frac {2 b x}{(1-a) (a+b x+1)}\right )+\text {arctanh}(a+b x)^2 \left (-\log \left (\frac {2}{a+b x+1}\right )\right )+\text {arctanh}(a+b x)^2 \log \left (\frac {2 b x}{(1-a) (a+b x+1)}\right )+\frac {1}{2} \operatorname {PolyLog}\left (3,1-\frac {2}{a+b x+1}\right )-\frac {1}{2} \operatorname {PolyLog}\left (3,1-\frac {2 b x}{(1-a) (a+b x+1)}\right )\)

input
Int[ArcTanh[a + b*x]^2/x,x]
 
output
-(ArcTanh[a + b*x]^2*Log[2/(1 + a + b*x)]) + ArcTanh[a + b*x]^2*Log[(2*b*x 
)/((1 - a)*(1 + a + b*x))] + ArcTanh[a + b*x]*PolyLog[2, 1 - 2/(1 + a + b* 
x)] - ArcTanh[a + b*x]*PolyLog[2, 1 - (2*b*x)/((1 - a)*(1 + a + b*x))] + P 
olyLog[3, 1 - 2/(1 + a + b*x)]/2 - PolyLog[3, 1 - (2*b*x)/((1 - a)*(1 + a 
+ b*x))]/2
 

3.1.5.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 6474
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> 
 Simp[(-(a + b*ArcTanh[c*x])^2)*(Log[2/(1 + c*x)]/e), x] + (Simp[(a + b*Arc 
Tanh[c*x])^2*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b*(a 
 + b*ArcTanh[c*x])*(PolyLog[2, 1 - 2/(1 + c*x)]/e), x] - Simp[b*(a + b*ArcT 
anh[c*x])*(PolyLog[2, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + S 
imp[b^2*(PolyLog[3, 1 - 2/(1 + c*x)]/(2*e)), x] - Simp[b^2*(PolyLog[3, 1 - 
2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e} 
, x] && NeQ[c^2*d^2 - e^2, 0]
 

rule 6661
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IG 
tQ[p, 0]
 
3.1.5.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.80 (sec) , antiderivative size = 901, normalized size of antiderivative = 6.09

method result size
derivativedivides \(\text {Expression too large to display}\) \(901\)
default \(\text {Expression too large to display}\) \(901\)
parts \(\text {Expression too large to display}\) \(1544\)

input
int(arctanh(b*x+a)^2/x,x,method=_RETURNVERBOSE)
 
output
ln(-b*x)*arctanh(b*x+a)^2-arctanh(b*x+a)^2*ln(-(b*x+a+1)^2/(1-(b*x+a)^2)+1 
+a*(1+(b*x+a+1)^2/(1-(b*x+a)^2)))+1/2*I*Pi*csgn(I*((b*x+a+1)^2/((b*x+a)^2- 
1)+1+a*(1-(b*x+a+1)^2/((b*x+a)^2-1)))/(1-(b*x+a+1)^2/((b*x+a)^2-1)))*(csgn 
(I*((b*x+a+1)^2/((b*x+a)^2-1)+1+a*(1-(b*x+a+1)^2/((b*x+a)^2-1))))*csgn(I/( 
1-(b*x+a+1)^2/((b*x+a)^2-1)))-csgn(I*((b*x+a+1)^2/((b*x+a)^2-1)+1+a*(1-(b* 
x+a+1)^2/((b*x+a)^2-1)))/(1-(b*x+a+1)^2/((b*x+a)^2-1)))*csgn(I/(1-(b*x+a+1 
)^2/((b*x+a)^2-1)))-csgn(I*((b*x+a+1)^2/((b*x+a)^2-1)+1+a*(1-(b*x+a+1)^2/( 
(b*x+a)^2-1))))*csgn(I*((b*x+a+1)^2/((b*x+a)^2-1)+1+a*(1-(b*x+a+1)^2/((b*x 
+a)^2-1)))/(1-(b*x+a+1)^2/((b*x+a)^2-1)))+csgn(I*((b*x+a+1)^2/((b*x+a)^2-1 
)+1+a*(1-(b*x+a+1)^2/((b*x+a)^2-1)))/(1-(b*x+a+1)^2/((b*x+a)^2-1)))^2)*arc 
tanh(b*x+a)^2-arctanh(b*x+a)*polylog(2,-(b*x+a+1)^2/(1-(b*x+a)^2))+1/2*pol 
ylog(3,-(b*x+a+1)^2/(1-(b*x+a)^2))+1/(-1+a)*a*arctanh(b*x+a)^2*ln(1-(-1+a) 
*(b*x+a+1)^2/(1-(b*x+a)^2)/(-1-a))+1/(-1+a)*a*arctanh(b*x+a)*polylog(2,(-1 
+a)*(b*x+a+1)^2/(1-(b*x+a)^2)/(-1-a))-1/2/(-1+a)*a*polylog(3,(-1+a)*(b*x+a 
+1)^2/(1-(b*x+a)^2)/(-1-a))-1/(-1+a)*arctanh(b*x+a)^2*ln(1-(-1+a)*(b*x+a+1 
)^2/(1-(b*x+a)^2)/(-1-a))-1/(-1+a)*arctanh(b*x+a)*polylog(2,(-1+a)*(b*x+a+ 
1)^2/(1-(b*x+a)^2)/(-1-a))+1/2/(-1+a)*polylog(3,(-1+a)*(b*x+a+1)^2/(1-(b*x 
+a)^2)/(-1-a))
 
3.1.5.5 Fricas [F]

\[ \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx=\int { \frac {\operatorname {artanh}\left (b x + a\right )^{2}}{x} \,d x } \]

input
integrate(arctanh(b*x+a)^2/x,x, algorithm="fricas")
 
output
integral(arctanh(b*x + a)^2/x, x)
 
3.1.5.6 Sympy [F]

\[ \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx=\int \frac {\operatorname {atanh}^{2}{\left (a + b x \right )}}{x}\, dx \]

input
integrate(atanh(b*x+a)**2/x,x)
 
output
Integral(atanh(a + b*x)**2/x, x)
 
3.1.5.7 Maxima [F]

\[ \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx=\int { \frac {\operatorname {artanh}\left (b x + a\right )^{2}}{x} \,d x } \]

input
integrate(arctanh(b*x+a)^2/x,x, algorithm="maxima")
 
output
integrate(arctanh(b*x + a)^2/x, x)
 
3.1.5.8 Giac [F]

\[ \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx=\int { \frac {\operatorname {artanh}\left (b x + a\right )^{2}}{x} \,d x } \]

input
integrate(arctanh(b*x+a)^2/x,x, algorithm="giac")
 
output
integrate(arctanh(b*x + a)^2/x, x)
 
3.1.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\text {arctanh}(a+b x)^2}{x} \, dx=\int \frac {{\mathrm {atanh}\left (a+b\,x\right )}^2}{x} \,d x \]

input
int(atanh(a + b*x)^2/x,x)
 
output
int(atanh(a + b*x)^2/x, x)